

Instructions for abstract preparation

- Abstracts should be written in English.

- Font: Arial 10 pt,
- single-spaced.

- Do not use more than one page for your abstract, please. Title: One initial capital letter followed by lower case letters. Use bold letters. Author: Start new line for authors. The presenting author should be underlined.

Address: Start new line for the address.

Structure your abstract in: Aims, Methods and results and Conclusions.

Please provide the following information:

Presenting author: Email:

Please send your abstracts to: Henning.Morawietz@tu-dresden.de.

An abstract example can be found here:

NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice

<u>Heike Langbein</u>¹*, Coy Brunssen¹*, Anja Hofmann¹, Peter Cimalla², Melanie Brux¹, Stefan R. Bornstein³, Andreas Deussen⁴, Edmund Koch², Henning Morawietz¹

¹Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany;

²Department of Anesthesiology and Intensive Care Medicine and Clinical Sensoring and Monitoring, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany;

³Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany;

⁴Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany

*Both first authors contributed equally to this study.

Aims: Endothelial dysfunction is an early step in the development of atherosclerosis. Increased formation of superoxide anions by NADPH oxidase Nox1, 2, and 5 reduces nitric oxide availability and can promote endothelial dysfunction. In contrast, recent evidence supports a vasoprotective role of H_2O_2 produced by main endothelial isoform Nox4. Therefore, we analysed the impact of genetic deletion of Nox4 on endothelial dysfunction and atherosclerosis in the low-density lipoprotein receptor (Ldlr) knockout model.

Methods and results: Ex vivo analysis of endothelial function by Mulvany myograph showed impaired endothelial function in thoracic aorta of Nox4^{-/-}/Ldlr^{-/-} mice. Further progression of endothelial dysfunction due to high-fat diet increased atherosclerotic plaque burden and galectin-3 staining in Nox4^{-/-}/Ldlr^{-/-} mice compared with Ldlr^{-/-} mice. Under physiological conditions, loss of Nox4 does not influence aortic vascular function. In this setting, loss of Nox4-derived H₂O₂ production could be partially compensated for by nNOS upregulation. Using an innovative optical coherence tomography approach, we were able to analyse endothelial function by flow-mediated vasodilation in the murine saphenous artery in vivo. This new approach revealed an altered flow-mediated dilation in Nox4^{-/-} mice, indicating a role for Nox4 under physiological conditions in peripheral arteries in vivo.

Conclusions: Nox4 plays an important role in maintaining endothelial function under physiological and pathological conditions. Loss of Nox4-derived H_2O_2 could be partially compensated for by nNOS upregulation, but severe endothelial dysfunction is not reversible. This leads to increased atherosclerosis under atherosclerotic prone conditions.